Measurements of the surface temperatures on box type models with high reflective paint were conducted, in order to investigate the reproducibility of effects of high reflective paint using heat budget analysis. The surface temperatures calculated by heat budget analysis were compared with observed results. The maximum difference of the surface temperature of the roof surface due to reflect ratio of paint was -5.3 degrees. In the case that measured weather data on the site were used as input, calculated surface temperature seemed to be compatible to the observed value. In the case that weather data by the nearest observatory were used, the surface temperatures showed differences to some extent.

**Key Words:** High Reflective Paint, Surface Temperature, Actual Measurement, Heat Budget Analysis

1. はじめに

近年、環境への意識の高まりとともに、地球温暖化やヒートアイランド現象の対策として、建物においても再生可能エネルギー利用や省エネルギー対策が積極的に施されている。省エネルギー対策としては、省エネルギーモドルの導入や自然エネルギーの利用のほか、高反射塗料や屋上緑化などの建物外表面による対策が用いられていている。

高反射塗料は、建物外表面を塗布することにより日射エネルギーが高い割合で反射し、都市空間への顕熱負荷低減によるヒートアイランド現象の緩和や建物内部への熱伝達を減らすことによる建物輸熱負荷の低減効果が期待されている。そのため、近年高反射塗料は数多く開発され、その反射性能や耐候性に関する研究が盛んに行われている。

一方で、建物外表面の性能や色などの外観デザインのほか、周辺建物の影響も考慮した熱収支計算コードが開発されており、高反射塗料や屋上緑化など建物外表面による対策を実建物に使用する際の効果の予測、すなわち建物表面温度や建物輸熱負荷の低減予測に適用されつつある。

本検討では、熱収支計算コードによる高反射塗料による効果の予測精度を把握することを目的として、ボックス型モデルの実測により一般塗料と高反射塗料による屋根面表面温度の差を検討対象日では最大-5℃であった。入力する気象条件を実測値とした場合には、熱収支計算コードによる予測結果は実測値と良い対応を示したが、最寄りの気象台の観測値を用いた場合には、予測結果と実測値に差異がみられた。

**Key Words:** High Reflective Paint, Surface Temperature, Actual Measurement, Heat Budget Analysis
高反射塗料69％である。実測模型の概要を図-1に示す。
模型の設置場所は、三井住友建設（株）技術開発センター（千葉県総師市）の敷地内とし、8時〜16時までは周辺建物および模型双方の影響を受けない位置に設置した。
模型設置場所の地表面はアスファルトである。実測状況を写真-1に示す。

（2）測定項目
実測模型の測定項目は、模型の外表面温度および模型内部の温湿度とした。模型の外表面温度は模型の6面それぞれの中央に熱電対を設置し測定した。気象データとして全天日射量、風向風速ならびに温湿度を測定した。
日射計および風向風速計は模型の北側約2mの位置に、温湿度は模型の約15m東側にある建屋の軒下に設置した。日射計の設置高さは模型高さと同じH=1.0mとして測定値は周辺地物からの反射を含んだ日射量となっている。風向風速計の設置高さはH=1.5mとし、模型の影響を受けない高さとした。また、8時〜16時は正時ごとに模型の南側約4mの位置において天空写真を撮影し、実測時の雲の様子を記録した。測定項目および測定機器を表-1に、模型および測定機器の設置位置を図-2に示す。測定は2009年9月2日から17日までの約2週間行行った。

3．実測結果
測定期間のうち比較的晴天が続いた2009年9月10日の実測値を検討対象とした。

（1）気象データ
日射量、気温ならびに風速を図-3に、実測時の雲の状況を写真-2にそれぞれ示す。午前中は比較的雲が少なく晴天であり、日射量は正午まで増加傾向にあった。正午〜14時は、曇りがちで日射量に急激な変動がみられた。気温は15時〜17時には西日の影響と考えられる上昇がみられ、この時間帯を除くとこの日の最高気温は約30℃であった。また、日最大平均風速は1.8m/sで、模型設置場所付近は比較的風速が低かった。

（2）模型温度
no.1〜no.3の屋根面および壁面4面の表面温度と模型内部の温度を図-4に示す。屋根面の表面温度は日射量の増加とともに上昇し、正午頃最大となった。壁面の表面温度は、各面が受ける直日の日射量が多くなる時間帯（例えば、東壁面は7時〜11時）で表面温度が高くなった。

<table>
<thead>
<tr>
<th>測定項目</th>
<th>計測機器</th>
<th>測定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>日射量</td>
<td>全天日射計MS002（測定器）</td>
<td>16時間積算値（10分毎）</td>
</tr>
<tr>
<td>風向風速</td>
<td>風向風速計V176AF816（吹送測定器）</td>
<td>16時間平均値（10分毎）</td>
</tr>
<tr>
<td>温湿度</td>
<td>おんどどり(T&amp;D)</td>
<td>10分毎</td>
</tr>
</tbody>
</table>

写真-2 雲の状況（2009年9月10日）
北壁面は直達日射を受けないため，他の面よりも表面温度の変化は小さい。午後は日射量の増減が大きく，日射量の増減に従って変化する分の表面温度は変動している。検討した模型は熱容量が小さかったため，表面温度は比較的温度の変化を考えられる日射量の増減により変動したと考えられる。

no.1（一般塗料）と no.3（高反射塗料）の表面温度の差は屋根面において最大-5.3℃（10:30），南壁面では-4.2℃（10:40）であった。また，塗料による模型内部温度の差（no.1 と no.3 の差）は 10 時前後で最大となり，その差は-2.5℃であった。なお，no.2 の屋根面の表面温度は no.3 の屋根面の表面温度と，no.2 の壁面の表面温度と模型内部温度は no.1 のそれらとほぼ同じであった。

4. 熱収支計算コードによる予測

（1）計算概要

熱収支計算には，商品コード「サーモレンダー-3 Pro（エアーデン USED）」を使用した。計算対象は，実測模型を再現した 3 つの立方体モデルと地盤面（10 m × 12 m の範囲）として，周辺建物モデル化していない。立方体モデルに設定した物性値を表-2 に示す。

計算対象日は 2009 年 9 月 10 日とし，気象条件として実測値を用いた場合と東京都管気象台（全天日射量を観測している最寄りの気象台）の観測値を用いた場合の 2 ケースで検討を行った。気象条件は，全天日射量，温度度および風速を 1 時間ごとに与える。気象条件に実測値を用いる場合には，上記条件のほか天空写真から推定した雲量も考慮した。天空写真が存在しない場合は雲量を 2 とした。

なお，実測値における 15 時～17 時の日の影響と考えられる気温の昇降は補正を行った。計算に用いた気象データを図-5 に，推定した雲量を表-3 に示す。気温は 6 時～18 時では実測値と東京都管気象台の観測値でほぼ同じである。日射量は，午前中はほぼ同じ値であるが正午過ぎからは実測値のほうが多い。風速は東京都管気象台の観測値（標準条件による高さ補正値）は，終日実測値と比較すると大きな値であった。

（2）計算結果

no.1（一般塗料）と no.3（高反射塗料）の屋根面，東面および南壁面の表面温度の計算結果を実測値とともに図-6 に示す。気象条件として実測値を用いた場合，屋根面や南壁面は日射量の変化が少ない時間帯（8 時～12 時）では，実測値と比較的によく対応している。しかし，東壁面では実測でみられた 7 時～11 時の直達日射による温度上昇は再現されていない。この傾向は，西壁面の13
表-4 高反射塗料の効果（2009年9月10日）

<table>
<thead>
<tr>
<th>計算値</th>
<th>実測値</th>
<th>降面面表面温度（12時）</th>
<th>東面面表面温度（9時）</th>
<th>南面面表面温度（12時）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>no.1</td>
<td>no.2</td>
<td>no.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>温度差</td>
<td>温度差</td>
<td>温度差</td>
</tr>
<tr>
<td>東京管区気象台</td>
<td>42.6℃</td>
<td>36.5℃</td>
<td>-6.1℃</td>
<td>33.8℃</td>
</tr>
<tr>
<td>実測値</td>
<td>43.8℃</td>
<td>38.9℃</td>
<td>-4.9℃</td>
<td>31.1℃</td>
</tr>
</tbody>
</table>

には誤差は大きくならず傾向があり、今後検討が必要と考えられる。正午〜14時において実測値には急激な温度変化がみられるが計算ではそれを見逃していない。これは、計算では気象変化を1時間ごとに与えているため日射量の変化が緩やかであることが、実測のデータは急激に建築の状態を示しており、表-4に示すように、実測値では実測値と多少の差異はあるものの、表面温度はほぼ一致した。また、東面面実測でみられた午前の温度上昇を表現できていないため、高反射塗料の効果も実測は大きくならなかった。東京管区気象台の観測値を用いた場合には、風速の変化もあり、表面温度が急激に予測された場合、高反射塗料の効果である表面温度の差も小さくなった。

5. まとめ

本報告では、実測による高反射塗料による表面温度の低減効果を確認し、熱収支計算コードにより予測した効果と比較検討を行い、以下の知見を得た。

① 実測したポッケ型型面は熱容量が小さく、表面温度は日射量や気温の変化に敏感に反応した。実測において一般塗料と高反射塗料の屋根面表面温度の差は検討対象面では最大5.3℃であった。

② 熱収支計算において、気象条件に実測値を用いた場合、日射量の変化が少ない時間帯では表面温度は実測値を示し、高反射塗料の効果が予測精度を示すとともに良好であった。気象条件に東京管区気象台の観測値を用いた場合は、風速の変化により表面温度が急激に予測となった。高反射塗料の効果は小さく評価されなかった。

③ 実測でみられた直達日射による表面温度の上昇を再現するためには、直達日射量を適切に見積もる必要があり、今後検討が必要である。

参考文献

1) 例えば、本橋健司ほか: 太陽熱高反射率塗料の性能に関する研究（その7）耐候性試験後の日射反射率について、日本建築学会大会学術講演摘要集, pp.1035-1036, 2009.8

2) 浅倉貴史, 桐生正夫: 屋外の空気状態と構成材料を考慮した建築熱シミュレーションモデルの開発、日本建築学会環境系論文集, 第578号, pp.47-54, 2004.4

3) 永田忠彦, 沢田康正: 時空による水平面斜射日射の試案、日本建築学会大会学術講演摘要集, 第267号, pp.519-520, 1978.5