太陽光発電所でのストリング監視による異常検知方法の検討

Examination of the Detection Methods with String Monitoring on PV Power Plant

環境・リニューアル技術部 丸山 信一郎 SHIN-ICHIRO MARUYAMA 環境・リニューアル技術部 西尾 新一 SHIN-ICHI NISHIO

太陽光発電所を長期的に安定して運用するために,発電異常の予測や検知を迅速に行い,発電トラブルを防 ぐことが重要である。しかし,数千枚~数十万枚の太陽光パネルから構成される発電所において,総発電量か ら異常を検出することは極めて困難である。そのため,発電所において発生する各種異常を網羅的解析し,各 異常の検出手法を提案した。そして,それらがストリング監視でどのように検出できるか三田川太陽光発電所 にて実証した。結果,各ストリングの発電量の異常による変化パターンを検出でき,具体的な異常の内容や原 因を推定可能にした。

キーワード:太陽光発電所,ストリング,監視,異常検知

For the purpose of the long term and stable operation at the PV power plant. Prevention of generation trouble by quick prediction or detection of the generation abnormality is important. But it is extremely difficult to detect abnormality from quantity of total PV generation comprised of several thousand or hundreds of thousands of pieces of solar panels. Therefore, various abnormality occurred in a power plant were analyzed cyclopaedically and detection technique for each abnormality is proposed. String monitoring at Mitagawa PV power plant demonstrated how they could detect abnormality. As the result, change patterns by the abnormality of the quantity of generation of each string could be detected, and actual abnormal actuations and causes could be estimated.

Key Words: PV Power Plant, String, Monitoring, Detection Method

1. はじめに

太陽光発電所を長期にわたり安定して運用するには発 電異常の予測および検知を迅速に行い,発電トラブルを 防ぐことが重要である¹⁾。しかし,メガソーラー発電所 においては,数千枚〜数十万枚の太陽光モジュールから 構成されるため,総発電量監視から異常検知を行うこと は極めて困難である²⁾。

そこで、太陽光発電所で発生する異常について解析し ストリング単位で発電量を測定し、電力線を通信回線と して利用する技術のPLC通信により正確かつ迅速に監視 できるストリング監視システムを用いて実証実験を行 い、異常検出方法を検討した。本報では、その検討成果 について述べる。

なお,本成果は,経済産業省の「平成29年度新エネ ルギー等の保安規制高度化事業(電気施設保安技術高度 化の評価・検証事業)」の一部である。

2. 太陽光発電所の発電監視技術

現在の太陽光発電所の発電監視では、人力によるもの から通信技術を用いたものまで幅広い監視手法がある。 監視として、新たな設備を必要としない売電メーターの 検針結果を利用する方法があるが、月単位かつ全体発電 量での監視となり、電力データの取得頻度や緻密さが最 も低くなる。また、PCS (Power Conditioning System :太 陽光モジュールで発電した直流電流を交流電流に変換す る機器)単位で遠隔監視する方法では、リアルタイムで 状態を監視できるものの太陽電池モジュール(製品)単 位での異常を検出することは難しい²⁾。そのため、最も 緻密な監視としてモジュールー枚一枚に監視装置を設置 して監視する手法が考えられるが、この方法では監視装

図-1 ストリング監視システム例

置のコストが大きくなるという課題がある。よって,こ れらのことから,コストと緻密さのバランスの良い手法 として,モジュールを十数枚直列接続したストリングと いう単位での監視手法を選択できる。ストリング監視は モジュール監視と比べて緻密さは低くなるが,ストリン グを集約する接続箱に計測装置を設置することで,装置 台数をモジュール監視と比べ大幅に削減でき,コスト面 で優れている。このような利点から,太陽光発電所でス トリング監視を用いて効果を検討することとした。メガ ソーラーで用いるストリング監視システム例を図-1に示 す。ストリング監視システムでは,電流センサによりス トリング単位の電流値を計測し端末器に集約し直流電流 線に計測値データを乗せ,データ収集機器にデータを収 集しモニタリング装置より計測値を読み取る。

3. 発生する異常の網羅的解析

太陽光発電所で発生する異常を故障木解析 (FTA: Fault Tree Analysis)によってその原因を網羅的に解析した³⁾。 その結果を図-2に示す。「発電出力の低下」に着目しそ の発生要因を階層的に検討した。

その結果, 39 種類(F1~F39)の要因としてまとめること

図-2 故障木による太陽光発電所の異常要因解析

図-3 時系列でみた異常による4種類の変化パターン

ができた。また,FTAによって抽出した 39の異常要因 は,発電低下が発生する様相として図-3に示す4つの時 系列推移パターンに分類できると考えた。(1)急激な変化 (以下,変化(1)という)は,突然発電量が低下する変化で あり,(2)時間帯変化(以下,変化(2))は,他のストリング と比較して午前・午後の時間帯の発電の動きが異なるも のである。(3)経年的変化(以下,変化(3))と(4)季節による 変化(以下,変化(4))は,年次など長期の時系列におい て,冬季や夏季の発電量の違いがあるものである。各要 因が具体的にどのような異常であるか,加えてストリン グ監視においてどのように観測されるかを以下に述べ る。

・ F1 :太陽電池モジュールの著しい汚れ 太陽電池モジュール表面の汚れによる発電の低下。 モジュール内の発電セルが1枚以上汚れると,該当 クラスタのバイパスダイオードが ON となり,モジ ュールの発電量一部を喪失。一般的にモジュールは 3クラスタ構成であるため,1/3を損失。埃,火山 灰などの蓄積や,泥の飛散,鳥糞や木葉など飛来物 による変化(1)のパターンが発生。

- F2:ホットスポットによる異常発熱
 モジュール内の発電セルがホットスポットになり表 面のガラスが熱膨張を繰り返して割れるなどの破損
 が発生。さらに、ガラス割れから水分が混入し表面
 の曇りや酸化等を引き起こすなど変化(3)が発生。
- F3 : 異物落下によるガラス割れ 鳥または悪戯などにより石などがガラス表面ぶつけ られ割れる。 F2 と同じ現象を誘引。
- F4: クラスタ断線
 半田クラックやインターコネクタとセルの接触不良などにより、クラスタを構成する配線の一部が断線。バイパスダイオードが動作し、モジュールの発電量の1/3を損失。断線時には、変化(1)が発生。
- ・ F5 : クラスタ断線高抵抗化
 F4 と同じような原因であるが、断線まで至らず高 抵抗化。電圧降下分が、バイパスダイオード ON 時 より高くなるとダイオードが動作。一方、動作しな い場合は、発熱しエネルギーを消費するため、変化
 (3) が発生。
- F6:ジャンクションボックスの電極腐食 樹脂充填の行われていないジャンクションボックス などにおいて水分の侵入により,酸化や腐食が進行 し高抵抗化。変化(3)が発生。
- F7:ジャンクションボックスの焼損
 バイパスダイオードの故障や高抵抗状態を長らく放置した場合や製造時の不具合などで発火する事例⁴⁾

がある。変化(1)が発生すると考えられるが、事前 に多くの場合で変化(3)の状態を経過。

- F8 : バイパスダイオードの開放故障
- バイパスダイオードが開放状態で故障すると,物影 などで発電低下して本来動作する局面で動作せず, 当該クラスタで多くの電力を発熱により消費⁵⁾。変 化(1)が発生。
- F9:バイパスダイオードの短絡故障
 バイパスダイオードが短絡状態で故障すると、当該 クラスタが短絡状態となり発電に寄与しなくなる。
 ジャンクションボックス内、またはクラスタで発電
 電力を消費して発熱状態となる。故障状況により変
 化(1)または変化(3)が発生。加藤らの実フィール
 ドでの研究報告(2004 年実施、当該発表は2012年)
 のによると、産総研メガソーラータウンに設置され た5640枚のモジュールのうち、1273枚でF8の開放
 故障とあわせてバイパスダイオードの故障を確認。
- ・ F10 : PID の発生

PID(Potential Induced Degradation) は、ストリング電 圧が1000Vを越える高電圧システムにおいて2010年 頃から報告されはじめている異常である⁷⁾。高電圧 に加えて、高温、多湿環境で発生しやすい。発電セ ルからモジュールのフレームに電流が漏れ出し、発 電セルの発電能力が失われていく。変化(3)が発 生。

- ・F11:化学反応で酢酸ガス発生 モジュール内部に水分が混入し、封止材と化学反応 を起こして酢酸ガスが発生し、モジュール表面剥離 や裏面にふくらみなどが発生した事象を報告⁸⁾。こ れらの異常は、F10と同じような時系列パターンと 考えられる。
- F12, F13:荷重によるモジュール破損, F14:フレ ームの破損

モジュールの上に重量物が落下,または堆積し,モ ジュールやそのフレームが物理的に破壊された状態。発電の電気回路が物理的に切断され,断線状態 に至ると考えられ,変化(1)が発生。

- F15:モジュールの長期的歪
 基礎の変形や毎年の積雪荷重によりフレームに長期
 的に歪みが発生する状態。発電セルを接続するイン
 ターコネクタなどが断線すると変化(1)が発生。
- ・F16:架台の損壊やモジュール飛散による破損,
 F17:雪の重さによる架台の破損, F18:太陽電池
 モジュールおよび架台固定不備
 架台が地震や台風によって損壊した際や強風などに
 よってモジュールが飛散した状態。断線が発生する

と F15 と同様に変化(1)が発生。

- ・F19:周囲の状況悪化
 物影によって日射がさえぎられ,発電量が低下。雑草などの成長によって変化 (2)や変化 (3)が発生。
 また太陽の軌跡の関係で冬季のみ影響が出ることもあり、その場合は変化 (4)も同時に発生。
- F20:防水処理不良
 施工不良などによりF10と同様な状態が発生。
- F21:振動等によるコネクタ外れ コネクタの接合部分が断線または高抵抗化。不良の 程度により変化(1),または変化(3)が発生。
- F22:コネクタ内アークによる焼損
 F21の状態がより進行し、コネクタ内でアーク放電
 や発熱等が発生し焼損した状態。変化(1)が発生。
- ・ F23:コネクタ嵌合不良による水分の侵入
 コネクタの嵌合が不十分で、中に水分等入り高抵抗
 化。変化(3)と断線状態になると変化(1)が発生。
- ・F24:ケーブル絶縁不良による短絡
 獣害や、落雷などによるケーブル被服の絶縁不良、
 風などによる揺れで架台とのこすれによる被覆の摩
 耗など、ケーブル被覆の絶縁が劣化し、短絡事故を
 発生。短絡が発生した瞬間に変化(1)が発生。
- ・F25:ケーブル配線不良による断線
 ケーブルが、風などによる振動で、断線が発生。断
 線した瞬間に変化 (1) が発生。
- ・F26:密閉性不良による雨水短絡,F27:虫侵入等による短絡
 接続箱や集電箱内に雨水や動物などが入りこみ,端子部分で短絡が発生。短絡した瞬間に変化(1)や短絡に至るまでの変化(3)が発生。
- ・F28:被覆損傷し焼損,F29:ケーブル絶縁劣化による短絡
 接続箱や集電箱内のケーブルの被覆部分の破損。熱や動物などによって被覆が損傷。F26,F27と同様な変化を発生。
- ・F30:逆流防止ダイオードの短絡故障 当該ダイオードで保護されていたストリングの開放 電圧が、PCSの最大電力点より制御された電圧を下 回った際に逆流が発生し、当該ストリングが発熱。 変化(1)と変化(3)が発生。
- F31:逆流防止ダイオードの開放故障
 当該ダイオードで保護されていたストリングが断線
 状態となり、変化(1)が発生。
- F32:電線管破損と内部ケーブル断線
 草刈などのメンテナンス作業や、自然災害などで配
 線が切断された状態。変化 (1) が発生。

- ・F33:ねじの緩みによる発熱
 施工時のトルク管理などが不十分で、ねじが緩み接
 触抵抗の増加やアーク放電が発生。端子の高抵抗化
 による変化(3)と接触不良による変化(1)が発生。
- ・F34:結線ミスによる短絡
 施工不良により、ショート状態で結線され課電時に
 短絡が発生。変化(1)が発生。
- ・F35:開閉器断
 開閉器が異常電流や高温などでトリップを発生。変化(1)が発生。

• F36 : SPDの短絡不良

- **SPD(Surge Protective Device)**は, 雷などによって発生 する高圧誘導電圧・電流をアースに逃す装置であ る。この装置が短絡した場合は, 他の正負端子短絡 などと同様に変化 (1) が発生。
- ・F37: SPDの開放不良 雷などの高圧誘導電圧・電流を逃がせないため、配 線にダメージを与え焼損。ダメージの度合いによっ て変化(1)や変化(3)が発生。
- F38:ヒューズ断
 PCS内部ないし,集電箱などのヒューズが異常電流
 や温度によってトリップ。変化 (1)が発生。
- F39: 通気孔,フィルタの異常 換気フィルタの目詰りによりPCS内部の温度が上昇 しPCSが停止。変化(1)が発生するが,通常PCSで 異常を検知。

以上39件の直接的要因が太陽光発電所で発生する異常 と言える。ここまでの解析結果のうち,断線関連の異常 (F12, F13, F14, F16, F17, F18, F23, F22, F25, F31, F32, F35, F37, F38)は,発電量の急激な低下により検出できる。 また, PCSの異常である F39は,発電停止が起こった場 合にPCSによって検出できるため検討対象外とする。

4. 提案手法

FTAでの解析により,各直接的異常の要因がどのよう な発電量の変化パターンとして表れるかを3章で検討し た。本章は,それらのパターン毎にストリング監視を用 いて異常を自動的に検出する手法について提案する。

(1)急激な変化が発生する異常の検出

本節では, 急激な変化として発生すると考えられるとした, F24, F26, F27, F28, F29, F30, F34, F36 を自動的に検出する方法を提案する。

急激な変化をとらえるためには,監視装置側の計測周 期を短くすることが基本的には必要である。今回使用し たストリング監視装置では、ストリング単位の電流値を 6秒毎にサンプリングを行い、1分間毎に平均化処理を 行った値を収集している。一般的なストリング監視装置 でもこのような統計処理が行われている。加えて、太陽 光発電の発電量は、PCSによる MPPT により最大限の発 電量を取り出すように数百~数千 Hz で制御される。そ のため、急激に電流が低下するような場面であってもM PPT により電流が数ミリ秒程度で回復する場合もある。 ストリング監視装置で、このような瞬間的かつ小さな変 化を捉えることは難しい。一方で、今回検出しようとし ている異常は一度発生した場合に、自然に回復するとい うことは考えにくいため、異常が発生するとその異常が 継続した状態となると考えられる。

本検討では、明け方、夕方の日射強度が少ない(100 W/m²以下)の時間帯に着目した。この時間帯では、太 陽電池モジュールは発電しており、この電力によってス トリング監視装置は動いているが、PCSは起動するまで には至っていない。そのため、この時間帯に、正負間の 短絡や、逆流防止ダイオードの短絡故障などが発生して いた場合には、太陽電池モジュールの発電した電力が該 当の故障箇所に流れこむ現象が発生する。ストリング監 視はそれらの異常な電流を計測し、これによって瞬間的 な変化によって発生した異常を検出することができる。 また電流と電圧から短絡抵抗値なども計算でき、その値 からどのような異常であるか推測結果を提示できる。

このような太陽光発電所の朝夕の時間帯を用いた異常 電流の研究は一部行われている⁹が,ストリング監視装 置のような市場に流通するコモディティ製品を用いた手 法やPCSと監視装置の動作開始・停止時間の差を用いる ような手法は十分に研究されていない。

(2)時間的変化,季節変化が発生する異常の検出

FTA で時間的変化が発生するとした F18 や F19 にあた る異常を検出するには,教師無し学習の一つ,k-means ¹⁰⁾を用いた

F18やF19では主に物影が発生する。この物影は,太 陽の移動によって,影響範囲がかわり,時間的に発電が 変化する。この物影による朝方,夕方の発電変化の検出 のために,晴れの一日間,すべてのストリングの計測結 果を使用する。この複数本のストリングの時系列発電量 データを,k-meansによりクラスタリングし,影による 異常のあるストリングを自動的に検出する。

k-means の適用時は,一時的な雲等の影響を除外する ために,発電データを1時間の平均値とした。また,使 用したデータは発電が期待できる 6:00 から 17:59 までの 12 時間とした。この1時間ごとの平均値データを kmeansでクラスタリングするために、k(クラスタ数)を 決定する必要がある。kについては数学的に適当な値を 求めることもできるが、今回は経験的にk=9とした。

クラスタリングの結果として、一日の発電量の最も大 きなクラスタを1とし、他のクラスタの発電割合を計算 した。評価は、一日(6:00-17:59)、朝方(6:00-10:59)、日中 (11:00-12:59)、夕方(13:00-17:59)の4区分で行い、割合が 0.9以下を異常と定義した。特に、朝方と夕方で異常と判 断されたストリングをF18、F19と判定した。

(3)経年的変化が発生する異常の検出

経年的に変化のある異常として分類された F1, F2, F3, F5, F6, F9, F21, F23, F33, F37 を自動的に検出する方法としては,年単位での長い期間での変化を監視する。

太陽光発電の発電は、図-4の青線(i)に示すように、天 候によって日々大きく変動する。図の例では3年間の 日々の日中 11:30 ~ 12:30 の1時間の平均発電電力を示 している。この変動を抑えて長期間の発電データを比 較・検討するために、黄線で示すような包絡線(ii)を用 いた値のスムージングを行う。包括線は過去30日のデー タを用いて、もっとも発電量の大きい1日の値を結んで いくことにより描画した。

日々の発電実績から経年的変化に該当するストリング を抽出するために,発電実績を正規化する。太陽光発電 所では,モジュールは架台に設置されるが,この架台の 角度は固定であることが大半であり,季節による太陽軌 道の違いにより発電量が異なる。正規化はこの影響を排 除するために行った。

正規化する対象のストリングとして,最大値仮想スト リングを生成した。三田川太陽光発電所で生成した結果 を図-4の緑線(iii)に示す。最大値仮想ストリングとは, 発電所内のすべてのストリングの日々の最大発電量の値 を抽出した時系列の値である。つまり,n本のストリン グがある発電所のある1日の発電実績値の集合Pを式 (1),最大値仮想ストリングの発電実績値Pvを式(2)と 定義する。

$\mathbf{P}=(\mathbf{P}_1,\mathbf{P}_2,\ldots,\mathbf{P}_n)$	(1)
$P_v = max(P)$	(2)

この最大値仮想ストリングの発電実績値P_vを用いて,各 ストリングの発電実績値を正規化した。最大値仮想スト リングを用いて,(ii)の時系列データを正規化した例を (iv)に示す。

異常検出では、この正規化値をストリング別に線形回 帰した。そして、一般的にモジュールの経年劣化保証の 下限である、年率 1% を越えて発電が低下しているスト リングを経年的な異常を持つストリングとして検出し た。つまり,各ストリングの正規化値をy,時間経過を xとして,最小二乗法を用いて y=ax+b の a と b を推定 し, a について年率 1% を越えるものを異常とする。ま た,冬季においては,太陽の軌道の関係上,夏季とくら べ障害物による影が広がるため,冬季を排除して夏季(4 月から9月末)のデータのみを用いる。

図-4 発電実績値と最大値による包絡線

5. ストリング監視実証実験

(1)概要

実証実験は、ストリング計測監視について、商用施設 としては初となる直流電源線を通信線として利用する P LC ストリング監視を竣工当初より採用した三田川太陽 光発電所にて実施した。三田川太陽光発電所の諸元を以 下に示す。

①所在地:佐賀県神埼郡吉野ヶ里町吉田2810
 ②竣工:2014年12月
 ③発電出力: 1MW
 ④太陽電池:多結晶シリコン型 250W × 4,396 枚

⑤パワーコンディショナ:500kW×2台

⑥ストリング数: 314 箇所

三田川太陽光発電所のストリングは、図-5のような配置で、ストリング単位での発電状況と異常箇所を図-6の モニターにより監視されている。既存の計測監視モニタ ーは、ストリングから収集した発電電流データのリアル タイム(1分毎)表示ならびに、周囲より発電出力が低 下しているストリングを簡易な閾値判定により検知し、 当該のストリングの電流計測値を黄色表示することで注 意を喚起するモニタリングシステムとなっている。また

※モジュールの3色の色分けは各接続箱に属するモジュールの区別を示す

図-5 三田川太陽光発電所での各種機器と各ストリングの配置

計測したデータは、サーバに蓄積されているので約3年 間で取得した各ストリングの電流と電圧のデータを解析 し、発電電力の時間・季節的変化と経年的変化について 評価した。

図-6 ストリング単位の計測監視モニター

(2)発電電力の時間・季節的変化の検出評価

k-means での検出の評価のため、冬季・夏季のデータ を実際に k-means を用いてクラスタリングし、現地確認 により評価を行った。

はじめに,夏季の快晴日 (2015/6/4)の結果について図 -7に示す。横軸と縦軸はそれぞれ,各ストリングの時間 と時間帯毎の発電量を,赤破線は各クラスタの発電の平 均値を示す。314本のストリングの時系列変化がクラス タリングされていること,また特徴的な波形を持つクラ スタが C2, C3, C4, C5, C6, C9等にクラス タリングされていることが判断できる。C1,C7,C8が異 常の無い発電を1日通して行っているストリングであり クラスタ間の差は少ない。C5は日中に発電が低く,C6 は1日を通して発電が低い。C2 と C4 は夕方に発電が 低く,C3,C9は朝方に発電が低い。

次にクラスタリングから,異常判定を行った結果を表 -1に示す。前章に記載の方法のように,各時間帯で最も 多い発電量の平均値を持つクラスタをまずは選択した。 各種時間帯の正常と異常を「○」と「×」で表してい る。また各時間帯で最大クラスタとなったクラスタを表 中で赤丸とした。例えば, C2 は1日異常であり,夕方 異常でもあるが朝方と日中は正常であると,この提案手 法によって判定できる。同様の評価を冬季(2015/12/1)で も行い結果を三田川発電所の地図上にマップしたものを 図-8に示す。日中異常を黒,朝方異常を青色,夕方異常 を赤色として,該当のストリングを示している。この地 図は上が北方向,下が南方向となっており朝方異常は発 電所の東側,夕方異常は発電所の西側に分布しているこ とが確認できる。冬季は夏季では異常とならなかったよ うな部分に影が伸びて影響が出ていることが確認でき る。一方で東側境界では,夏季に異常とされていたスト リングが冬季には異常ではないとされた。これは,夏季 と比較すると冬季は太陽の軌道が低く,該当ストリング に影のかかる時間帯の日射強度が全体的に少なく影によ る発電の低下が顕在化しにくいためである。

また,図-9に現地踏査した結果を示す。影を生じる原 因となる障害物があることや,実際に影がかかっている ことを確認した。このように一日の発電の時系列推移を

図-7 k-means によるクラスタリング結果

表-1	クラス	タリ	ングにし	にろ	異常判定
-----	-----	----	------	----	------

	ストリ ング数	1 日	朝 方	日 中	タ 方
C1	107	0	0	0	0
C2	3	×	0	0	×
C3	8	0	×	0	0
C4	5	0	0	0	×
C5	3	×	×	×	0
C6	1	×	×	×	×
C7	42	0	0	0	0
C8	129	0	0	0	0
C9	16	0	×	0	0

k-means により9種類にクラスタリングし,時間帯別に その発電平均値を比較することで影による異常を自動的 に判定でき,F18,F19を自動的に検出できた。

(3)発電電力の経年的変化の検出手法の評価

年的変化を線形近似の閾値により検出する手法を評価 するために,取得した3年分のデータを用いて評価実験 を行った。発電所での計測は,1分毎に行われているた め,これを1日分平均化し発電実績とした。この実績値 から前章での記述のように処理を行い,正規化値を算出 し異常検出を試みた。 提案手法で異常と判定されたストリングを地図と時系 列の変化と共に図-10に示す。地図上で黒色にしてある のが,異常疑いのあるストリングである。発電所は竣工 から約3年が経過しているが,時系列のグラフでは,値 を半年単位で平均値化している。また,この異常検出を 行うにあたり,前述の障害物の影による時間変化が見ら れるストリングは取り除いている。グラフの 3-3-6 等の 表記はストリングの識別子である。このように9本程度 のストリングが経年的な変化有として検出された。時系 列推移のグラフから経年的に発電量が低下していること が確認できる。これらのストリングでは3年間で平均し

図-8 障害物などの影による時間変化異常の検出結果

図-10 経年的変化のあるストリング一覧 (3-3-6などの表記はストリングの識別子)

て 4% 程度の低下が確認された。これはモジュールの保 証値で一般的に用いられる1年間での 1% よりも僅かに 高い値である。

これらのストリングに対して, F1, F2, F3, F5, F6, F9, F21, F23, F33 のような異常が発生しているかを確認する ために,現地調査で IV カーブ走査と熱画像によるモジ ュール異常検査¹¹⁾を行った。現地調査の 201

7/10時点で,最も低下が大きいストリングである 3-3-6 3-6-4, 3-8-5 を重点的に調査した。まず,熱画像によ る判定によってバイパスダイオードに異常 (F8, F9)のな いことが3ストリングとも確認できた。また, IV カー ブの走査を3ストリングで行ったが, IV カーブの外観 による評価でも異常のないことを確認できた。

これらのストリングの発電量の低下は,約4%程度と 太陽電池モジュールの一般的な性能保証の年率1%と比 べて僅かに高いものの,他の異常検出手法を用いても異 常のないことが確認できたため,低下は正常範囲である と考えられる。

6. 結論

本検討により,約4,000 枚の太陽光モジュールで構成 されるメガソーラー発電所の三田川太陽光発電所におい て,目視点検によってくまなく異常の有無を確認するの ではなく,PCS単位よりも詳細な設備監視のストリング 監視により早期に異常箇所を特定できることを確認し た。

また,FTA解析によって抽出した設備異常による阻害 要因と各要因に対する発電量低下の特徴をパターン分類 し,収集したデータの解析や異常の再現実験によりスト リング監視データの変化から異常状態を検出できること を確認した。

今後,太陽光発電所の高度な保守運用管理を実現する 中で生かしていくことができる。

謝辞:本報をまとめるにあたり,経済産業省の「平成2 9年度新エネルギー等の保安規制高度化事業(電気施設 保安技術高度化の評価・検証事業)」の共同事業者であ る住友電気工業株式会社,構造計画研究所株式会社,日 本大学理工学部西川教授にご指導,ご助言を賜りました こと,ここに記して深謝の意を表します。

参考文献

- 谷村晃太郎ほか:太陽電池アレイにおける異常予 測・検知に関する研究-ストリング監視システムを 用いた逆流防止ダイオード短絡故障の検知,平成30 年電気学会全国大会, 7-018, 2018.03
- 2) 近藤真由ほか:太陽電池アレイにおける異常予測・ 検知に関する研究-ストリング監視システムを用い た正負極間短絡事故の検知,平成30年電気学会全国 大会,7-019,2018.03
- 池上洋行ほか:太陽光発電所で発生する異常の網羅 的解析とストリング監視による異常検出手法,電気 学会 新エネルギー・環境研究会,FTE-18-006, 2018.02
- 大関崇,吉富政宣:太陽光発電の火災リスクに関して,安全工学会,2013.
- 5) 藤田直希ほか:太陽電池アレイにおける異常予測・ 検知に関する研究-バイパス回路の開放故障検出技 術における印加電圧波形の影響,平成30年電気学会 全国大会, 7-020, 2018.03
- K.Kato : V module failures observed in the field solder bond and bypass diode failures -, IEA PVPS Workshop@ EUPVSEC 2012, Characterising and Classifying Failures of PV Modules, 2012.
- S. Pingel, O. Frank, M. Winkler, S. Daryan, T. Geipel, H. Hoehne and J. Berghold : Potential Induced Degradation of solar cells and panels, Conference Record of the IEEE Photovoltaic Specialists Conference, 2010
- T. Shinoda : Acetic acid production rate in EVA encapsulant and its influence on performance of PV modules, Mitsui Chemicals, 2nd Atlas/NIST PV Material Durability Workshop, 2013
- Y. Zhao, B. Lehman, J.-F. DePalma, J. Mosesian and R. Lyons : Fault evolution in photovoltaic array during night-to-day transition, IEEE, 2010 IEEE 12th Workshop on Control and Modeling for Power Electronics, 2010
- J. MacQueen : Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, No. 1, pp. 281-297, 1967
- 11) 加瀬亮一,西川省吾:太陽電池モジュールのバイパス回路の開放故障検出技術に関する基礎検討,太陽 エネルギー,第3巻,No 43, pp.43-50, 2017