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An Unsupervised Machine Learning Approach 

for Damage Assessment in Structures 

 教師なし機械学習を用いた建築構造物の損傷評価手法の検討 

MEHBOOB RASUL* 1, CHAMILA RANKOTH*1

ラースル メホッブ，ランコス チャミラ 

This paper presents an unsupervised machine learning approach for damage assessment in 

building structures. A large dataset was created from a verified numerical simulation of a large-

scale shaking table experiment (E-Defense). The numerical simulation was automated to generate 

a large dataset automatically. The variables in each simulated case were location of damage and 

level of damage. The first three modal frequencies were collected from each case and later input 

to a Gaussian mixture model (GMM) for clustering. The GMM model was able to create clusters 

autonomously based on the level of damage and direction in which damage occurred to an extent. 

This approach shows the importance and applicability of creating large datasets and utilizing 

unsupervised learning for damage assessment. 
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本報では，教師なし機械学習を用いた建築構造物の損傷評価手法について検討した。まず，E-ディフ

ェンスにて実施された 3 階建て構造物の振動実験に対応する解析モデルを構築し，数値シミュレーショ

ン結果と実験結果を比較することで，解析モデルの妥当性を検証した。次に，この解析モデルを基に，

損傷位置および損傷レベルを変数とした数値シミュレーションを自動化し，大規模な機械学習用データ

セットを構築した。最後に，各シミュレーション結果から抽出した 1 次から 3 次の固有振動数に対して，

ガウス混合モデル（GMM）によるクラスタリングを適用した。その結果，GMM モデルにより損傷の有

無および程度を自動的に評価可能であることが示唆された。 

キーワード：機械学習，固有振動数，ガウス混合モデル（GMM），損傷評価，数値シミュレーション 

1. Introduction 

Damage assessment plays a pivotal role in structural health monitoring for structural integrity and public safety. 

Early and reliable identification of damage and its intensity can prevent catastrophic failures and reduce maintenance 

costs. Recently, machine learning and deep learning are extensively used for damage assessment1), 2). However, in 

many real-world applications, the availability of labeled data that distinctly represents damaged and undamaged states 

is limited or nonexistent. This limitation highlights the need for unsupervised machine learning techniques that can 

autonomously learn the underlying structure of data without requiring predefined labels3). Among the various 

unsupervised approaches, Gaussian mixture models (GMMs) provide a powerful probabilistic framework for modeling 

and clustering complex data. GMMs assume that observations are generated from a mixture of several Gaussian 
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distributions, each representing a latent cluster within the data 4). 

In this study, unsupervised GMM clustering is leveraged for damage detection in structural systems. By inputting 

the first three modal frequencies as a mixture of Gaussian components, it is aimed to automatically distinguish between 

normal and potentially damaged conditions without requiring prior labeling of the data. To determine the appropriate 

number of clusters that best represents the structural states, Bayesian Information Criterion (BIC) is employed, which 

balances model fit and complexity. This approach offers an interpretable, data-driven solution for identifying anomalies 

that may indicate damage, even in the absence of labeled examples. To verify the approach, experimental data from a 

shaking table experiment of a three-story building, conducted in Hyogo Earthquake Engineering Research Center (E-

Defense experiment) and simulation data of the verified numerical model of that experiment was used. As in the field 

of Structural Health Monitoring, obtaining data from actual structures, especially in case of damage states, is extremely 

rare so numerical simulation can provide a viable alternative to generate data. Furthermore, automation algorithm was 

created to run a large number of simulations continuously to create a large database of numerous damage conditions. 

2. Brief introduction to the E-Defense experiment 

For this study, experimental data is used from a full-scale 3-story building tested on E-Defense, which is a large-

scale shaking table in Japan, as shown in Fig. 1(a). The details of the experiment are reported by Yeow et al.5). Artificial 

earthquake waves were input based on a reference shaking acceleration (1.0-scaled excitation) that fit to the 5% damped 

acceleration response spectrum referred to "extremely rare earthquake motion" in Japanese Building Standard. During 

the experiment, the structure experienced 0.2-scaled excitation, 1.0-scaled excitation, 1.5-scaled excitation (twice), 

and 1.6-scaled excitation at various times. Throughout the experiment, continuous ambient acceleration data was 

recorded6). The layout of the sensors is shown in Fig. 1(a). The properties of concrete and D19 reinforcement bars 

mainly used in the building are shown in Table 1 and Table 2, respectively. 

 

                    Table 1.  Properties of concrete                               Table 2.  Properties of D19 reinforcement bars 

 

   
 (a)Test specimen          (b) FE model                                       (c) 1st three mode shapes 

Fig. 1. Full-Scale test specimen and eigen value analysis 

3. Verification of finite element modelling 

In this study, numerical modeling is carried out in DIANA FEA(V10.6) software. The model was created by using 

line elements apart from slab which was created as shell element as shown in Fig. 1(b). Model was generated with 1D 

Story Compressive strength Modulus of elasticity 
1F-2F 47.1 MPa 32.1 GPa 
2F-3F 44.1 MPa 33.5 GPa 
3F-RF 37.4 MPa 29.4 GPa 

Yield stress 379 MPa 
Tensile strength 567 MPa 
Young’s modulus  193 GPa 
Yield strain  2.0×10-3 
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and 2D elements instead of 3D to make computation cost low. The RC beams and columns were assigned as Class-III 

beam elements. Class-III beam elements use an isoparametric approach, where the displacements and rotations of the 

beam's axis normals are treated as independent. These are calculated by interpolating the nodal displacements and 

rotations. For compressive and tensile behavior, fib Model Code for Concrete Structures 2010 was used. Rayleigh 

damping coefficients α and β were considered as 0.2 /s and 0.002 s, respectively. The reinforcement was modeled as 

embedded bars by considering Von-mises plasticity. Strain hardening was also incorporated by considering total strain 

and yield stress values.  

As a first step of model verification, the weight of the simulated model was verified. The weight of the simulated 

model was calculated as 1,792 kN, which was almost equal to the actual weight of the structure i.e. 1,789 kN. 

3.1 Eigenvalue analysis 

An Eigenvalue analysis was performed to determine the eigen frequencies and corresponding mode shapes. Whereas 

fast Fourier transform (FFT) technique was employed to determine the experimental natural frequencies from the 

recorded ambient vibration data.  

The first three eigen frequencies obtained from simulation were 4.7 Hz, 5.0 Hz and 6.4 Hz, respectively. Whereas 

the first three experimental natural frequencies were 5.2 Hz, 5.3 Hz and 7.2 Hz, respectively. The difference in the 

simulated and experimental natural frequencies was considered to be small enough for the purpose of this study. The 

mode shapes as shown in Fig. 1(c) were identical in both cases. 

3.2 Structural nonlinear time-history analysis 

Structural nonlinear time-history analysis was performed to verify the acceleration response of the numerical model. 

Base acceleration containing 0.2, 1.0 and 1.5 (twice) scaled excitation along with extremely small amplitude ambient 

vibrations record before and after each shaking regime was used as shown in Fig. 2.  

Natural frequencies were verified after each shaking regime by using FFT technique on ambient vibrations response. 

After each shaking regime, a decline in frequences was observed. The comparison between experimental values and 

simulated values is shown in Fig. 2.  

The acceleration response was also verified at each floor for 0.2 and 1.0 scaled excitation. The results for 3rd floor 

and rooftop are shown in Fig. 3. It can be observed that the acceleration response is almost 100% matched in the case 

of 0.2-scaled excitation. Furthermore, in case of 1.0 scaled excitation, response is almost similar up to the maximum 

peak acceleration, but an attenuation was observed in case of simulation results. Furthermore, experimental and 

simulated time period also remained almost the same. 

 

  
Fig. 2. Comparison of experimental and simulated natural frequencies 

 

 
Modal frequencies (Hz) 

1st Mode 2nd Mode 
Exp. Sim. Diff. Exp. Sim. Diff 

Before Excitation 5.2 5.2 0 5.3 5.2 0.1 
0.2 Scaled Excitation 5 5 0 5 5 0 
1.0 Scaled Excitation 4.4 3.2 0.8 4 3.4 0.6 
1.5-1 Scaled Excitation 3.4 3 0.4 2.2 2.4 0.2 
1.5-2 Scaled Excitation 2.8 2.2 0.6 1.9 2.2 0.3 
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Fig. 3. Acceleration response at 3rd floor (Left) and roof top (Right) 

 
 

4. Creation of database 

Flowchart of the overall process of creating database is 

shown in Fig. 4. After verification of the numerical model of 

the E-Defense experimental model, an automated simulation 

technique was devised to create a large database. Unique 

damage scenarios based on intensity and location of the 

damage were introduced to the model. To do so, 4 levels of 

loads were applied on a particular location to introduce 

different levels of damage such as fine cracks, prior to 

reinforcement yielding, post reinforcement yielding and 

close to reinforcement rupture. As there were 42 members of 

the model, in the first simulation regime, aforementioned 

damage conditions were introduced at 1 location at a time 

resulting in 168 simulation cases.  

In the second simulation regime, the damage scenarios were 

introduced to 2 members simultaneously. This regime resulted in 3,444 simulation cases. Consequently, a total of 3,612 

simulation cases were run to generate a large database consisting of damage scenarios of varying intensities and 

locations. Due to the introduction of high nonlinearity through damage at multiple locations prior to the modal analysis, 

some analysis cases could not achieve proper convergence and therefore omitted from the database. The final database 

included around 2,500 cases. A plot of database is shown in Fig. 5. It can be observed that it is hard to distinguish 

between the data points without utilizing some appropriate visualization method. 

It is worth mentioning that running such a large number of numerical simulations one by one may result in substantial 

time consumption. To counter this issue, simulations were automated utilizing the Python application program interface 

to run numerous cases continuously without human interference. This automation technique saved a substantial amount 

of time and manpower. As the average computation time was around 10 minutes, thus total computation time was 

around 25 days for all cases.  

FE model verification 
Experimental data + Modal analysis 

+ Nonlinear time history analysis 

Introduce damage 
Structural nonlinear 

analysis 

Modal frequency 
changes due to damage 

Modal analysis 

 

Verified  

Model 

Multiple 
damage 

scenarios 
 

Database of 
Eigen 

frequency 
changes due 
to damage 

Automated with Python API of Diana FEA  

 

Fig. 4. Process of database creation 

Fig. 5. Plot of database 
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5. Unsupervised Gaussian mixture model (GMM) clusters 

5.1 Introduction to the unsupervised machine learning 

Unsupervised machine learning focuses on discovering hidden patterns or intrinsic structures in data without relying 

on labeled inputs and outputs. Unlike supervised learning, where models are trained on input-output pairs to predict 

outcomes, unsupervised learning explores relationships in data that are not explicitly annotated. This makes it 

particularly valuable when labeled data is scarce. Techniques such as clustering, dimensionality reduction, and anomaly 

detection fall under the umbrella of unsupervised learning. In many real-world scenarios, generating labeled data is 

resource-intensive, requiring expert input and time. Unsupervised models can autonomously extract meaningful 

groupings or representations, helping researchers and practitioners make sense of complex datasets. Additionally, 

unsupervised learning can reveal subtle structures or relationships in data that might otherwise go unnoticed in 

supervised frameworks3), 4), 7). 

5.2 Introduction to the Gaussian mixture models (GMMs) 

Among the various unsupervised methods, the Gaussian mixture models (GMMs) are well-known probabilistic 

models used for clustering and density estimation. The GMMs assume that the dataset is generated from a mixture of 

several Gaussian distributions, each representing a distinct cluster or component. The models estimate both the 

parameters of these Gaussian distributions (means and covariances) and the probability of each data point belonging 

to a specific component. The Expectation-Maximization (EM) algorithm is commonly used to iteratively refine these 

estimates. 

GMMs can accommodate clusters of different shapes, sizes, and orientations, making them particularly well-suited 

for the nuanced patterns often present in structural health monitoring data. Through the use of the Expectation-

Maximization (EM) algorithm, GMMs iteratively estimate both the parameters of these distributions and the 

assignment probabilities of data points to clusters. GMMs are particularly flexible because they can model clusters of 

various shapes and sizes, unlike simpler clustering methods such as k-means, which assumes spherical clusters of equal 

size4), 8). 

When applying clustering techniques such as GMMs, a key challenge is determining the optimal number of clusters 

or components that best represents the data. Selecting too few clusters may lead to underfitting, missing important 

structure in the data, while selecting too many can result in overfitting, where the model captures noise instead of 

meaningful patterns. 

The Bayesian Information Criterion (BIC) is a widely used statistical tool to guide this selection process. BIC 

balances model fit with model complexity by introducing a penalty term for the number of parameters in the model.  

When fitting GMMs, the BIC can be computed for models with varying numbers of clusters, and the model yielding 

the minimum BIC is typically selected as the best compromise between fit and parsimony9). This approach provides 

an objective, data-driven method for deciding how many clusters are appropriate, without relying on subjective 

judgment or visual inspection of cluster assignments. 

5.3 Application of GMM clusters in damage assessment  

The database as described in section 4 was then input into a GMM model to generate the clusters based on the level 

of damage.  The results of the BIC value analysis are shown in Fig. 6 which shows that the database can be distributed 

in almost 9 distinctive clusters as there was no ample change in BIC score after that. Fig. 6 shows the whole dataset 

in the form of normalized first 3 modal frequencies and then distribution of the database into 9 clusters using GMM 

clustering approach. 

Upon investigating it was found that the data which belongs to either no damage state or cracking only state was 

allocated to the lowered number clusters i.e. 1 and 2. As the level of damage increased, such as yielding of 

reinforcement and severe damage, the data allocation was moved to higher numbered clusters. Mean anomaly score 
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plot of all clusters is shown in Fig. 7 which also 

elaborates the allocation of the data to different clusters. 

It was also observed that the clusters that were 

deviating from vertical axis had damage either in 

columns or damage in multiple directions.  

Furthermore, the experimental data of 2 severe 

damaged conditions from the E-Defense experiment was 

also input to the GMM model to verify the accuracy and 

applicability of the model. It was found the experimental 

data was allocated to cluster 9 in an unsupervised manner 

as shown in Fig. 6 which represents the extreme damage 

condition. It is worth mentioning that the damage at 

lower stories was more pronounced as compared to the 

top story. For example, the same level of damage at the 

lower story level resulted in a much higher change in modal frequences whereas at the top story the change in modal 

frequences was much lower. This phenomenon resulted into allocation of datasets from top stories to lower numbered 

clusters even if the level of damage was higher.  

6. Conclusions 

This paper presented an unsupervised machine learning approach for damage assessment in structures using a large 

database of modal frequencies. Following conclusions are drawn. 

(1) Numerical simulation automation by creating python algorithms proved to be an excellent helping aid to run 

numerous simulations continuously and creating large database. 

(2) The Gaussian mixture model exhibited excellent capabilities of distributing the database of 1st 3 modal frequencies 

to distinguishable clusters based on damage condition. 

(3) It was also possible to observe whether the damage was in one direction or in multiple directions depending on 

the location of the cluster with respect to the vertical axis. 

(4) In case of same level of damage in different stories, the damage was more pronounced at lower story level as 

compared to top story in terms of change in modal frequencies. 

(5) This research exhibited the potential of damage assessment using large datasets, so an extension in the database 

can result in generalization of this system which may be applicable in all common types of buildings. 

Fig. 7. Mean anomaly score for clusters 

Fig. 6. Selection of number of clusters (Left), GMM clusters for whole dataset (Right) 
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