高強度コンクリートの破壊エネルギーに関する検討

Study of Fracture Energy for High Strength Concrete

藤田 学 MANABU FUJITA 高木康宏 YASUHIRO TAKAKI

圧縮強度 35~145N/mm²のコンクリートに関する破壊エネルギー試験を行い,多直線近似解析法により引張 軟化曲線を求めた。多直線近似解析法による荷重-ひび割れ開口変位曲線は,圧縮強度 80N/mm²を超える高強度 コンクリートに対しても実験結果を忠実に再現できた。また,引張軟化曲線より求められる破壊エネルギーと 載荷試験より求められる破壊エネルギーは,普通強度から高強度コンクリートまで概ね一致した。 キーワード:高強度コンクリート,破壊エネルギー,引張軟化曲線

Fracture energy tests were performed on concrete with compressive strength in the range 35 N/mm² to 145 N/mm², and tension softening diagram (TSD) was obtained as the value resulting from poly-linear approximation analysis. Load-CMOD curves obtained using the approximation analysis reproduced the results of the tests, even for high strength concrete. The figures for fracture energy obtained from TSD agreed with those obtained from loading tests for NSC to HSC.

Key Words : High strength concrete, Fracture energy, Tension softening diagrams

1. はじめに

これまで筆者ら¹⁾は、(社)日本コンクリート工学協会 「コンクリートの破壊特性の試験方法に関する調査研究 委員会」により提案された「プレーンコンクリートの破 壊エネルギー試験法(案)」²⁾(以下,試験法案)の算定 式に基づき,破壊エネルギー(本報告では破壊エネルギ ーはモード I 型に限定する)を求め、破壊エネルギーは 圧縮強度の増大に伴い圧縮強度 80N/mm² 程度までは増 大するが、それ以降は減少すること、一方 Hillerborg ら により提案されている特性長さ *L*³は, 圧縮強度と高い 相関性を有していることを確認し、特性長さの圧縮強度 に関する回帰式を示した。さらに、これら試験結果をせ ん断補強筋のない RC はり部材の斜めひび割れ発生時の 公称せん断応力度(以下, せん断強度)の寸法効果に関 する検討に適用し、圧縮強度 80N/mm²を超える高強度コ ンクリートのせん断強度の寸法効果則ならびにせん断強 度算定式を提案している4)。

前出の委員会では,試験法案の提案とともにその有効 性の検証と確認が行われ²⁾,加えて多直線近似解析法に よる引張軟化曲線推定プログラムも公開している⁵⁾。標 準化された試験法により,破壊エネルギーから引張軟化 曲線まで誰もが同じ水準で求められる環境がほぼ整った といえる。さらにコンクリート標準示方書[構造性能照査 編](以下,示方書)^のでは,新たに引張軟化特性に関し て破壊エネルギー推定式ならびにモデル化された引張軟 化曲線が示されている。

このように、破壊力学特性は材料特性として一般的に なりつつあり、設計、解析、破壊現象の解明など多方面 にわたり、今後さらに適用が進められていくものと思わ れる。しかしながら、示方書の適用範囲は圧縮強度 80N/mm²以下である上、圧縮強度 80N/mm²を超える高強 度コンクリートを対象とした標準化された試験法および 引張軟化曲線推定法による破壊力学特性の検討例は非常 に少ない。本報告では、高強度コンクリートの破壊エネ ルギー試験結果¹⁾に対し、引張軟化曲線推定プログラム の適用を試み、これより得られる破壊エネルギー値と、 載荷試験から得られる破壊エネルギー値の比較など破壊 力学特性に関する検討を行っている。

2. 破壊エネルギー試験の概要¹⁾

(1) 試験水準および使用材料

表-1に試験水準および配合,表-2に使用材料を示す。

	ケース	養生 条件	配合 強度 (N/mm ²)	スラ ンプ (cm)	空 気 量 (%)	水結 合材 比 W/B (%)	細骨 材率 s/a (%)	単位量(kg/m ³)						
Series								水 W	セメン ト C	B シリカ フューム SF	細 骨 材 S	粗 骨 材 G	混和 剤 ×B (%)	消泡 剤 ×B (%)
A	L-36	気中	36	7.5	3.7	565	47.9	162	287	0	881	962	1.1	0.009
	L-36-S	水中	36											
	M-60	気中	60	8.5	2.2	35.0	46.1	165	472	0	804	04 944	1.3	0.0
	M-60-S	水中	60						472		804			
	U-100	気中	100	4.5	2.3	21.0	42.2	160	686	76	667	917	1.6	0.0
	U-100-S	水中	100											
в	H-80-S	水中	80	50.0	1.2	30.0	52.8	150	450	50	907	842	1.2	0.015
	H-100-S	水中	100	64.0	2.1	25.0	50.4	150	540	60	824	842	1.4	0.012
	H-120-S	水中	120	61.0	2.0	20.0	46.3	150	675	75	699	842	1.7	0.012
	H-140-S	水中	140	69.0	1.4	16.7	41.5	150	810	90	575	842	2.1	0.012
	H-160-S	水中	160	58.5	1.8	14.3	35.7	150	945	105	450	842	2.4	0.012
	注) Series-B のスランプ値はフロー値を表す。													

表-1 試験水準とコンクリートの配合

表-3 材料試験結果

	圧縮	引張	ヤング	ポアソ	
ケーフ	強度	強度	係数	ン比	
<i>ŋ</i> – ∧	f'_c	f_t	E_c	ν	
	N/mm ²	N/mm ²	kN/mm ²		
L-36	35.1	2.87	29.0	0.175	
L-36-S	43.0	3.90	30.0	0.189	
M-60	50.2	4.19	32.1	0.182	
M-60-S	88.0	5.09	31.1	0.223	
U-100	85.6	5.47	37.2	0.182	
U-100-S	101.0	7.06	40.9	0.208	
H-80-S	91.9	5.61	39.6	0.221	
H-100-S	102.4	6.68	40.7	0.216	
H-120-S	127.8	7.07	42.9	0.224	
H-140-S	138.9	8.52	47.1	0.225	
H-160-S	145.8	7.13	47.0	0.204	

本試験は圧縮強度をパラメータとした全 11 ケースから なる。高強度コンクリートの製造には、シリカフューム および高性能 AE 減水剤を, Series-B では水和発熱を抑 制するため低熱ポルトランドセメントを使用し, 粗骨材 の最大寸法 dmax は 20mm で一定とした。

(2)試験体

試験体は試験法案 2)に準じて製作した。試験体寸法は 100mm×100mm×400mm であり、切欠き幅は約 4mm で あった。試験時の材齢は28日,各ケースの試験体数は5 以上とした。コンクリートの破壊エネルギー試験時にお ける材料試験結果を表-3に示す。

(3) 試験方法

載荷装置および計測位置を図-1 に示す.本試験では, 載荷スパン 300mm とし、294kN アムスラーで手動によ る荷重制御で実施した.載荷装置は両支点下にローラー

表-2 使用材料

材 料	Series-A	Series-B
サイント	普通ポルトランド	低熱ポルトランド
	セメント	セメント
	川砂	川砂
細骨材	表乾比重:2.62	表乾比重:2.58
	吸水率:1.65%	吸水率:2.68%
	砕石	砕石
粗 骨 材	表乾比重:2.63	表乾比重:2.67
	吸水率:1.59%	吸水率:0.97%

を配置し、水平方向に可動な構造とすると共に、支点の 一方は試験体の軸方向にも回転できる構造とした.

計測項目は載荷荷重,ひび割れ開口変位 (CMOD), 切欠き先端開口変位 (CTOD), 載荷点および支点の鉛直 変位とした.

載荷試験による荷重-CMOD曲線から算出される Grは 次式により求めた⁴⁾。

$$G_{f} = (0.75W_{0} + W_{1})/A_{lig}$$

$$W_{1} = 0.75(S/L \cdot m_{1} + 2m_{2}) \cdot CMOD_{c}$$
(1)

	破壊エネル	特性長	破壊エネル	特性長	初期結合	限界開口	ヤング係数	有効引張
ケース	ギー G_f	$i l_{ch}$	ギー G_f^{TSD}	さ l_{ch}^{TSD}	応力度 σ_0	変位 w _{cr}	の推定値 E_{cal}	強度 f_t^{eff}
	N/mm	mm	N/mm	mm	N/mm ²	mm	kN/mm ²	N/mm ²
L-36	0.197 (5.5)	692.3	0.201 (5.2)	707.7	4.92	0.710	26.4	2.75
L-36-S	0.197 (8.5)	388.6	0.200 (10.0)	394.1	5.37	0.644	27.0	2.89
M-60	0.201 (2.6)	368.2	0.202 (6.7)	369.0	6.27	0.330	32.5	3.64
M-60-S	0.202 (4.9)	242.9	0.202 (7.5)	242.8	6.47	0.451	30.0	3.45
U-100	0.192 (8.5)	208.5	0.216 (11.0)	268.6	7.31	0.350	31.4	4.11
U-100-S	0.180 (12.8)	147.5	0.172 (10.7)	141.2	7.05	0.231	31.4	3.62
H-80-S	0.211 (11.1)	265.5	0.200 (8.1)	251.0	7.99	0.192	29.6	4.62
H-100-S	0.170 (17.8)	154.7	0.158 (16.8)	144.4	11.13	0.122	34.0	5.26
H-120-S	0.185 (5.8)	158.5	0.164 (7.4)	141.0	11.67	0.109	33.7	5.83
H-140-S	0.172 (5.2)	111.5	0.159 (4.7)	103.3	13.67	0.080	36.0	7.05
H-160-S	0.175 (19.4)	162.0	0.155 (15.6)	143.3	15.12	0.060	38.0	7.74

表-4 破壊エネルギー試験結果

注)比較のため、表中の値は各ケースの解析可能であった試験体および解析結果の平均値を、()内の数 値は変動係数を表す.

 G_f^{TSD} は w_{cr} までの破壊エネルギーとして、 l_{ch}^{TSD} は破壊、エネルギー以外は材料試験結果を用いて評価している.

ここに、 W_0 : 破断までの荷重-CMOD 曲線下の面積, W_l : 試験体自重と治具がなす仕事, A_{lig} : リガメント面積, ml: 試験体重量, S: 載荷スパン, L: 試験体の全長, m_2 : 破断まで試験体に載る治具の重量, $CMOD_c$: 破断時のひ び割れ開口変位, とする

また、特性長さ l_{ch} は次式より求めた³⁾。

 $l_{ch} = E_c \cdot G_f / f_t^2 \tag{2}$

ここに, E_c :ヤング係数, f_t :引張強度,とする。

3. 試験結果および考察

(1) 試験結果および引張軟化曲線

破壊エネルギー試験結果を表-4 に示す。さらに、公開されている引張軟化曲線推定プログラム⁵⁾を用いて、 計測された荷重-CMOD曲線より引張軟化曲線を求めた。 解析の過程で算定される荷重-CMODの推定値と実測値 の比較を、代表的な試験体について図-2 に示す。図-2 より、いずれの圧縮強度レベルにおいても推定値と実測 値はよく一致しており、高強度コンクリートに対しても 公開プログラムは適用可能であるといえる。しかしなが ら、圧縮強度の低いケースでは全て十分な結果が得られ たが、圧縮強度の高いケースでは十分な結果が得られな い試験体の割合が増える傾向にあった。例えば、H-140-S では9体中2体が、H-160-Sでは9体中7体が不可であ った。解析結果が不十分であった試験体は、荷重低下域 を含め試験体の破断まで荷重-CMOD 曲線は概ね捉えら れていた。多直線近似解析法は、荷重-CMOD 曲線の初

写真-1 試験状況

期勾配を正確に評価することが困難な場合,正確な解析 ができないとされている⁵⁾。解析にあたり,実測値の荷 重-CMOD についてスムージング処理を行ったものの, 圧縮強度の高いケースほど,荷重-CMOD 曲線の初期勾 配が下に凸な弓なり形状を呈する傾向が現れ,これによ り解析結果が正確に得られなかったものと思われる。図 -3 にヤング係数について解析の過程で得られた推定値 と材料試験結果の比較を示す。推定値は材料試験結果に 比べて全体的に低く評価されており,圧縮強度が高いほ どこの傾向は強く,両者の差は大きくなっている。ヤン グ係数の推定値は,荷重-CMOD 曲線の初期勾配より算 定しているため,同じく初期勾配の影響によるものと思 われる。多直線近似解析により高強度コンクリートの引

張軟化曲線を精度よく得るために,荷重-CMOD 曲線の 初期勾配の補正および計測方法の改善が今後の課題と考

代表的例とし、図-2 と同一の試験体の引張軟化曲線 を図-4に、引張軟化曲線下の面積として求められる破壊 エネルギー G_f^{TSD} , G_f^{TSD} を用いて算出した特性長さ l_{ch}^{TSD} , 軟化が開始する初期結合応力度 σ_0 ,結合応力度 $\sigma=0$ の 時の開口変位である限界開口変位 wen ヤング係数の推定 値 Ecab 開口変位 0.01mm までの結合応力を平均化した有 効引張強度 ft (ft)を表-4 に示す。荷重-CMOD 曲線では, 圧縮強度が高いほど、ひび割れの開口が進行しないうち に荷重は急激に低下し, 脆性的な破壊に至ることが確認 されている¹⁾。一方,図-4より引張軟化曲線では,圧縮 強度が高いほど初期結合応力度からブレークポイントま での勾配が小さく,開口変位の増大に伴い急激に結合応 力度が低下する傾向が認められ、荷重-CMOD 曲線にお ける荷重低下域の傾向が反映された結果になっている。 また,限界開口変位は圧縮強度が高くなるほど小さくな る傾向が認められる。

無次元化した引張軟化曲線, すなわち縦軸を σ/σ_0 , 横軸を $w \cdot \sigma_0/G_f^{TSD}$ とした時の軟化勾配と, $w \cdot \sigma_0/G_f^{TSD}$ の関係を図-5に示す。なお, バイリニア型の引張軟化曲線である 1/4 モデルの場合, $w \cdot \sigma_0/G_f^{TSD} \leq 0.75$ では-1の

一定値となる。図-5 では、軟化勾配は圧縮強度の低いケ ースほど w· $\sigma_0/G_f^{TSD} \leq 0.1$ において小さく、それ以降は ほぼゼロに漸近している。圧縮強度が高くなるにつれ、 w· $\sigma_0/G_f^{TSD} \leq 0.1$ の軟化勾配は大きくなるが、w· $\sigma_0/G_f^{TSD} \geq 0.1$ の軟化勾配は大きくなるが、w· $\sigma_0/G_f^{TSD} \leq 0.8$ の 軟化勾配はより平均化され、-2~0 程度の値を示す傾向 となっている。すなわち、本検討では高強度コンクリー トの引張軟化曲線ほど、1/4 モデルのブレークポイント である w· $\sigma_0/G_f^{TSD} \leq 0.75$ までの軟化勾配は、1/4 モデル に近い値を示す結果となった。図-4 中の破線は 1/4 モデ ルを表し、これと解析結果を比べても、高強度コンクリ ート、特に圧縮強度 100N/mm²を超えるケースでは、解 析結果の引張軟化曲線は 1/4 モデルに非常に近い形状を 示している。このことより、示方書においてモデル化さ

える。

れた引張軟化曲線として示されている 1/4 モデルは,示 方書の適用範囲外である圧縮強度 80N/mm² を超える高 強度コンクリートに対しても適用可能であると思われる。

(2)破壊エネルギーの比較

表-4より,破壊エネルギー G_f および G_f^{TSD} とも,変動 係数は 20%以下となっている。前出の委員会における共 通試験では 20%程度の変動係数は認められており²⁰, G_f および G_f^{TSD} ともに普通強度から高強度コンクリートま で比較的良い精度で得られていると言える。また、 G_f の 変動係数が大きいものは G_f^{TSD} の変動係数も大きくなる 傾向にあり、荷重-CMOD 曲線のばらつきが解析結果のば らつきにも影響を与えることがうかがわれる。 $G_f \geq G_f^{TSD}$ の比較を図-6に示す。普通強度コンクリートでは両者はほぼ同程度の値を示しているが、圧縮強度 80N/mm²を超える高強度コンクリートでは両者に相違が 認められ、圧縮強度が高いほど、 G_f に比べ G_f^{TSD} が小さ くなる傾向が認められたが、 G_f^{TSD}/G_f は±15%の範囲に収 まっている。図-3のヤング係数 $E_c \geq E_{cal}$ の比較において も、圧縮強度が高いほどヤング係数の推定値 E_{cal} は過小 評価される傾向が顕著に認められており、これが $G_f \geq$ G_f^{TSD} の相違にも影響を与えている可能性がある。

(3) 各種パラメータに関する検討

材料の引張強度に関するパラメータである割裂引張強 度 f_t , 初期結合応力度 σ_0 , 有効引張強度 f_t^{ef} の比較を図

-7 に示す。 σ_0 は他の二つのパラメータに比べて大きな 値を示し, 圧縮強度に対して線形に増加する傾向が認め られ, 圧縮強度が高いほどその差が大きく現れた。一方, f_t^{eff} は圧縮強度に関係なく f_t と比較的近い値を示し, 両者 は良い対応を示している。 σ_0 はばらつきが大きくパラメ ータとして安定性がないという指摘もある⁷ことから, 材料の引張強度を評価するパラメータとしては有効引張 強度 f_t^{eff} の方が適当と思われる。

特性長さ l_{ch} ^{TSD}の比較を図-8に示す。図-8中の一 点鎖線は l_{ch} ^{TSD}に関する回帰式を、破線は文献 1)で示し た l_{ch} の回帰式を表す。なお、 l_{ch} ^{TSD}の回帰式の相関係数 は 0.95 であった。二つの回帰式はほぼ一致し、ともに圧 縮強度のほぼ-1.1 乗に比例する結果となった。 $G_f \ge G_f$ ^{TSD} の相違が本検討程度であれば、 $l_{ch} \ge l_{ch}$ ^{TSD}の相違はわず かであり、同様の圧縮強度相関を呈するといえる。ここ で、特性長さは圧縮強度の-1 乗に比例すると仮定し、最 小二乗法により求めた以下の簡易式を図-8 に実線で示 す。

 $l_{ch} = 20000 f_{c}^{-1.0}$ (3) 簡易式は l_{ch} および l_{ch}^{TSD} と非常によい相関を示し,その 相関係数はともに 0.94 であった。式(3)は非常に簡易な式 であるが,特性長さを十分な精度で算定可能であるとい える。しかし,本報告では骨材の最大寸法 d_{max} の影響に ついては検討していないため,式(3)の適用範囲は $d_{max}=20mm$ に限定される。

4. まとめ

本報告で得られた知見を以下にまとめる。

③多直線近似解析法による逆解析で得られた荷重
 -CMOD 曲線は, 圧縮強度 80N/mm²を超える高強度

コンクリートに対しても実験結果を忠実に再現でき た。

- ②高強度コンクリートの引張軟化曲線は、示方書に示されている 1/4 モデルに近い形状を示した。
- ③二つの破壊エネルギー $G_f \ge G_f^{TSD}$ は, 普通強度から 高強度コンクリートまで概ね同程度であった。

参考文献

- 松元香保里ほか:超高強度コンクリートの破壊エネ ルギーおよび材料特性に関する研究,コンクリート 工学年次論文報告集, Vol.24, No.2, pp.739-744, 2002.
- 2)(社)日本コンクリート工学協会:コンクリートの破壊特性の試験方法に関する調査研究委員会報告書, pp.401-405,2001.
- 3) Gustafsson, P. J. et al. : Sensitivity in Shear Strength of Longitudinally Reinforced Concrete Beams to Fracture Energy of Concrete, ACI Structural Journal, May-June, pp.286-294, 1988.
- 4)藤田学ほか:高強度コンクリートを用いた RC はりのせん断強度と寸法効果,土木学会論文集, No.711, V-56, pp.161-172, 2002.

5)橘高義典:引張軟化曲線多直線近似解析プログラム, (http://www.ecomp.metro-u.ac.jp/%7Ekitsu/fmpana-j.html)

- 6)(社)土木学会:【2002年制定】コンクリート標準示 方書[構造性能照査編], 2002.
- 7)橘高義典ほか:高強度コンクリートの破壊パラメータに及ぼす粗骨材の影響,日本建築学会構造系論文集,第490号, pp.7-16, 1996.