柱梁接合部内に機械式継手を用いたRC造架構の加力実験 一普通強度材料による架構実験ー

Loading Tests of RC Frames Arranged Mechanical Splices within Beam-Column Joint

— Test of RC Frames Using Normal Strength Materials —

新上 浩 HIROSHI SHINJO

小坂 英之 HIDEYUKI KOSAKA

山中 久幸 HISAYUKI YAMANAKA

谷垣 正治 MASAHARU TANIGAKI

建築技術部 平野 秀和 HIDEKAZU HIRANO

柱梁接合部内に機械式継手を用いて梁主筋を接合する鉄筋コンクリート造架構の構造性能に関する研究として、普通強度材料を用いた十字形試験体の加力実験を実施し、梁主筋を通し配筋とする在来工法による試験体との比較を行った。その結果、本工法では、使用する機械式継手の形状によって履歴性状が異なること、通し配筋の架構に比べて最大荷重以降の荷重低下が小さいこと、またコンクリート強度を高くすることによって履歴吸収エネルギーが増大することなどが確認された。

キーワード: 柱梁接合部,プレキャストコンクリート,機械式継手,付着,支圧

The structural performance of the RC frame using normal strength materials, of which the beam reinforcement were connected with the mechanical splices within the beam-column joint, was compared by the loading tests with the conventional method of without connection. As a result, it was confirmed that hysteretic characteristics in this method depended on the shape of the mechanical splice, the load decrease after maximum load of this method was smaller than the conventional method in the range of large deformation, and higher strength concrete improved the hysteretic absorbed energy.

Key Words: Beam-Column Joint, Pre-cast Concrete, Mechanical Splice, Bond, Bearing

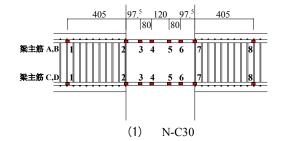
1. はじめに

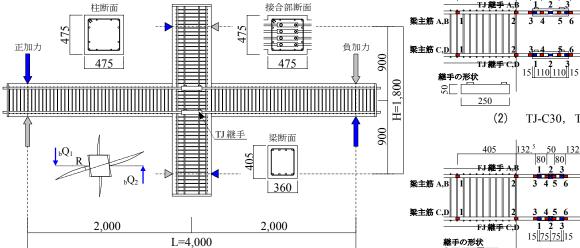
プレキャスト化率の高い鉄筋コンクリート造建築物の 施工法として、柱梁接合部内に機械式継手を用いて梁主 筋を接合し、柱梁接合部のコンクリートを現場打設する 工法が多く採用されている。

本研究は、柱梁接合部内に機械式継手を用いて梁主筋を接合する鉄筋コンクリート造架構の構造性能に関するものであり、前報告¹⁾では高層建物を想定した比較的高強度の材料(コンクリート: Fc54, せん断補強筋:

SHD685) を用いた十字形架構の加力実験結果を報告した。本報告では、前報告より低強度の材料を用いた十字形架構で実施した加力実験について報告する。

2. 実験概要


(1)試験体


表-1に各試験体の諸元を、図-1に試験体形状(TJ-C30)を、図-2に柱梁接合部内の梁主筋の配筋状況とひずみの計測位置を示す。試験体は、縮尺率約1/1.7の同形状の十字形架構 4 体からなり、N-C30 は、梁主筋を通し配筋とした試験体、TJ-C30、TJ-C39、およびFJ-C30は、柱梁接合部内に機械式継手を用いて梁主筋を接合した試験体である。

使用した機械式継手は、TJ-C30、TJ-C39はスリーブと ねじふし鉄筋の隙間にモルタルを充填する方式の継手 (以下、TJ継手)、FJ-C30はねじふし鉄筋を接続するカ プラーにモルタルを注入する方式の継手(以下、FJ継

表-1 各試験体の諸元

試験体名		N-C30	TJ-C30	TJ-C39	FJ-C30		
コンクリート		Fc30		Fc39	Fc30		
柱	Bc×Dc[mm]	475×475					
	主筋	8-D16 (SD390)+4-D10 (SD345)					
	せん断補強筋						
	せん断補強筋	6×2-D6 (SD295A)					
接合部	梁主筋接合方法	通し配筋	ΤJή	FJ継手			
(1女)口(可)	継手の外径×長さ[mm]		φ 50	φ 50×250			
	継手長/接合部せい		0.53		0.38		
	断面 b _G ×D _G [mm]	360×405					
梁	主筋	8-D19 (SD390)					
	せん断補強筋	2-D6@45 (SD295A)					

TJ-C30, TJ-C39 5 50 |80| |80| 1 2 3 15||75|75||15 : 鉄筋 : 継手 180 (3) FJ-C30

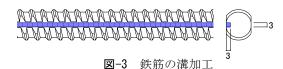

図-1 試験体形状 (TJ-C30)

表-2 材料試験結果

鉄筋		降伏強度 σ _y 引張強度		r _t	t 弾性係数 Es		降伏ひずみ ϵ_y		使用部位	
		$[N/mm^2]$	[N/mm ²]		$[\times 10^5 \text{N/mm}^2]$		[×10 ⁻⁶]			
D19(SD390:溝なし)		436	641		1.91		2474		梁主筋	
D19(SD390:溝あり)		438	644		1.85		2492		梁主筋	
D16 (SD390)		447	656		1. 95		2483		柱主筋	
D10 (SD345)		386	536		1.87		2114		柱主筋	
D6 (SD295A)		323 % 1	495		1. 87		3728 ※1		せん断補強筋	
コンクリート	圧縮強度 σ _B	弾性係数 Ec	ポアソン比	割	裂強度 σ _t / j [*] j [*]		上縮強度	σ_{B}	弾性係数 Ec	
1277 F	[N/mm ²]	$[\times 10^4 N/mm^2]$	ν		[N/mm ²]	7 771	[N/mm ²]		$[\times 10^4 \text{N/mm}^2]$	
N-C30	37	3. 03	0. 19		2. 5	N-C3	0			
TJ-C30	38	3. 14	0. 20		2.7	TJ-C	106		3. 25	
TJ-C39	49	3. 23	0. 20		3. 2	TJ-C	39		0. 20	
FJ-C30	34	2. 88	0.18		2.5 FJ-		30 100		1. 99	

※1:0.2%オフセット時

図-2 柱梁接合部内の梁主筋の状況 とひずみ計測位置

手)である。鉄筋径に対する継手外径の比は、TJ継手は 2.63, FJ継手は1.53であり, 柱のせいに対する継手長さ の比は、TJ継手は0.53、FJ継手は0.38である。また、各 試験体のコンクリートの設計基準強度 F_c は、N-C30、 TJ-C30, FJ-C30はF_c30, TJ-C39はF_c39である。

破壊モードは、 RC 規準²⁾の梁の降伏曲げモーメント の略算式による計算値を基に, すべての試験体で, 梁曲 げ降伏先行型となるように計画した。

試験体の製作は, あらかじめ各機械式継手によって接 合した梁主筋を配筋し、柱と梁のコンクリートを一体で 打設した。ひずみ計測を行う梁主筋には、付着への影響 を考慮し、柱梁接合部範囲の鉄筋のふしの隙間に、図-3 に示す 3mm × 3mm の溝加工を行い、その中にリード 線を埋設した。表-2に使用材料の試験結果を示す。

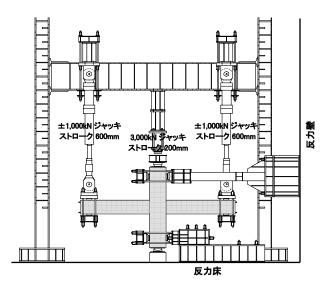


図-4 加力装置図

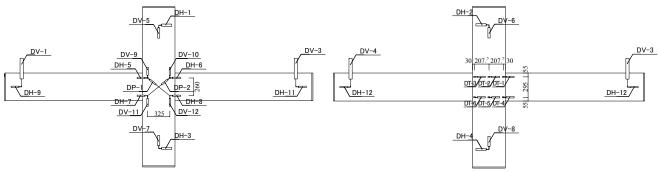


図-5 変位の計測位置

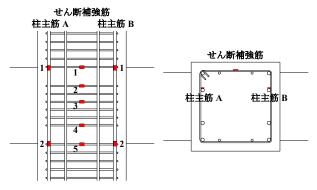


図-6 ひずみの計測位置

(2) 加力方法

図-4に加力装置図を示す。加力は、試験体の上下柱の反曲点位置をピン・ローラー支持とし、柱上部の油圧ジャッキ(圧縮型:最大荷重 3,000kN,ストローク200mm)により一定軸力(N=0.04 σ_B ・ B_c ・ D_c 、 σ_B :コンクリート圧縮強度、 B_c :柱幅、 D_c :柱せい)を加え、左右の梁端部の油圧ジャッキ(両動型:最大荷重± 1,000kN,ストローク600mm)により、逆対称変形状態となるように、正負交番繰り返し漸増載荷する形式である。また制御は、梁端変位に基づいた変形角 R で行い、加力スケジュールは、 $R=\pm 1/400$ radを 1 サイクル、 $R=\pm 1/200$ 、1/100, 1/67, 1/50 rad を B を B サイクル、B の計12サイクルを経て、最終的に B B に B の に B

(3)計測方法

図-5に変位の計測位置を、図-6に各試験体共通のひずみの計測位置を示す。変位の計測にはひずみゲージ式変位計を用い、柱反曲点位置を不動点とした計測フレームを基準とし、梁端加力位置、柱上下のピン・ローラー位置、柱梁接合部の4隅の水平・鉛直変位、柱梁接合部の対角方向の変位、および柱梁接合部内の梁主筋の移動量を計測した。また、図-6に示す柱主筋と柱梁接合部のせん断補強筋の各位置、および図-2に示す梁主筋と機械式継手の各位置にはひずみケージを貼付し、ひずみを計測した。

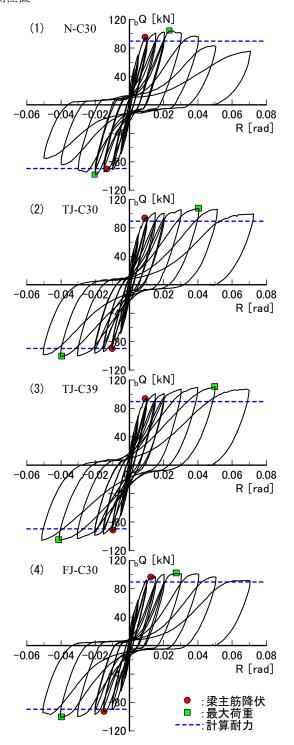


図-7 梁せん断力-変形角関係

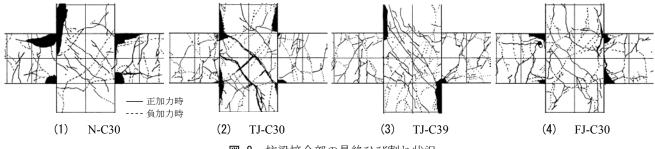


図-8 柱梁接合部の最終ひび割れ状況

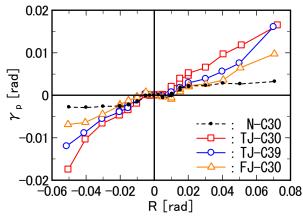
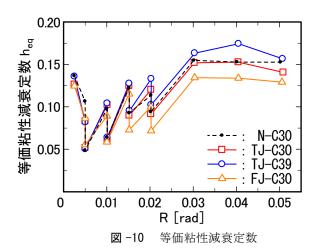



図-9 柱梁接合部せん断変形角の推移

3. 実験結果および考察

(1)破壊状況および荷重ー変形曲線

図-7に梁のせん断力 $_{b}Q$ と変形角 R との関係を、図-8 に柱梁接合部の最終ひび割れ状況を示す。すべての試験 体において R=1/1000 rad までに梁に曲げひび割れが発生 し, TJ-C30, TJ-C39は, R=1/100 rad までに, N-C30, FJ-C30は、R=1/67 rad までにすべての梁主筋が降伏して いる。降伏時荷重は、梁の曲げ耐力の計算値2)とほぼ一 致している。

梁主筋降伏後の状況については,通し配筋のN-C30は 最大荷重に到達した後の R=1/33 rad 時の加力において, 梁端部圧縮側のコンクリートが圧壊し、それ以降の加力

表-3 実験の最大荷重と各耐力の計算値

	- 2-
単位[1⋅N]	N/mm ²

	実験値	計算値								
		梁		†	È	柱梁接合部				
試験体名	最大荷重	曲げ耐力				せん断耐力	付着強度※2			
B 400(11 - E1	$_{b}Q_{max}$	$_{b}Q_{bmu}^{*1}$	$_{b}Q_{bsu}^{-3}$	$_{b}Q_{cmu}^{3}$	$_{b}Q_{csu}^{\overset{*}{\cancel{\times}}2}$	$_{b}Q_{psu}^{3/2}$	τ_u	τ_u/τ_j		
N-C30	104	90	235	150	234	168	8.1	0.93		
TJ-C30	107	90	235	150	236	171	8.3 **4			
TJ-C39	110	90	240	163	258	203	9.7 **4			
FJ-C30	102	90	235	144	223	155	7.6 ^{¾4}	0.87		

※1:文献 2) ※2:文献 3) ※3:文献 4) ※4:通し配筋とした場合

で緩やかな荷重低下を起こした。TJ継手を用いたTJ-C30, TJ-C39は、R=1/25~1/20 rad で最大荷重を示し、 その後もほとんど荷重低下は見られなかった。

両者の違いは履歴形状に見られ、コンクリート強度の 低いTJ-C30のほうが若干逆S字の形状が強く現れてい る。FJ継手を用いたFJ-C30は、最大荷重までは通し配筋 の N-C30 の破壊状況と類似しているが、梁端部の圧壊の 規模はN-C30より小さく、荷重低下の度合いは比較的小 さい。履歴形状は、このFJ-C30が最もループ面積の小さ い逆S字状を示している。

図-9に柱梁接合部のせん断変形角γρの推移を示す。 機械式継手を用いたTJ-C30, TJ-C39, FJ-C30は, Rの増 加とともに γ が増加しているが、通し配筋のN-C30は 荷重の低下が生じ始めた R=1/50 rad 以降, γ , はほとん ど増加していない。TJ継手を用いたTJ-C30とTJ-C39を比 較すると、コンクリート強度の低いTJ-C30のほうがγ_p は大きく、柱梁接合部のせん断ひび割れ幅の増大が顕著 に見られた。これは、コンクリート強度によって、接合 部のせん断性能 (剛性, 耐力) が異なるためであると考 えられる。FJ継手を用いたFJ-C30では、R=1/50 radまで O_{γ} , は通し配筋の N-C30 とほぼ同程度であったが、そ の後の変形で γ_p が増加した。

(2) 実験の最大荷重と耐力の計算値

表-3に梁のせん断力に換算した実験の最大荷重と耐力 の計算値との対応を示す。実験の最大荷重 pQmax は、梁 の曲げ耐力の計算値 $_{b}Q_{bmu}^{2}$ に対する比率で $1.13\sim1.22$ で あり,よい対応を示している。

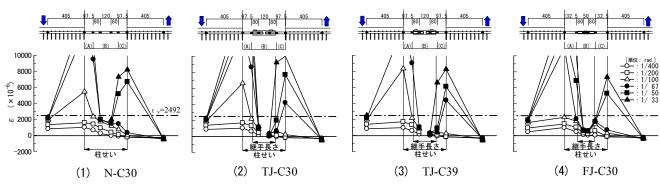


図-11 梁主筋のひずみ分布

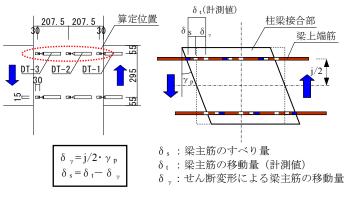


図-12 梁主筋のすべり量の算定方法

(3) 等価粘性減衰定数

図 -10 に各変形角における等価粘性減衰定数 h_{eq} を示す。N-C30 と TJ-C30の h_{eq} は,R=1/20 rad 時に,TJ-C30 が少し小さくなっているのを除き,各変形角でほぼ同程度の値である。この 2 体と比較すると,TJ-C39は少し大きい値を,FJ-C30は少し小さい値を示した。これらは,(1)項で述べた梁せん断力 $_bQ$ 一変形角 R 関係における逆 S 字状の履歴形状の状況と対応している。

(4) 梁主筋のひずみ性状

図-11に正加力時の梁上端筋のひずみ分布を示す。引張側鉄筋部分(A区間)のひずみを見ると、TJ継手のTJ-C30、TJ-C39は通し配筋のN-C30と比較して引張ひずみの進展が大きく、FJ継手のFJ-C30はN-C30よりむしろ小さくなっている。これに対応して圧縮側鉄筋部分(C区間)では、R=1/100 rad以降で負加力時の残留引張ひずみが顕著に見られる。TJ継手の試験体では、継手部分(B区間)の付着抵抗によって、引張側となるA区間(正加力時)・C区間(負加力時)にひずみが集中することがわかる。FJ継手のFJ-C30では、R=1/200 rad(□印)の早期からC区間の継手寄りのひずみが正値(引張側)に移行しており、変形角Rが比較的小さい段階から柱梁接合部内の付着が劣化していることが推察される。

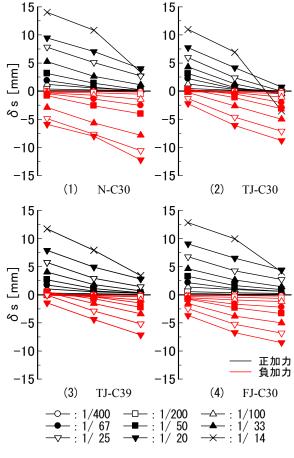


図-13 梁主筋のすべり量

(5) 柱梁接合部内の梁主筋のすべり量

柱梁接合部内の梁主筋のすべり状況を把握するため,図 -12 に示す方法で,コンクリートからの相対的な梁主筋のすべり量 δ 。を算定した。図に示す梁主筋の移動量 δ 。は,最外部鉄筋および機械式継手に溶接した全ネジボルトを,コンクリートのかぶり部に設けた $15 \text{mm} \times 30 \text{mm}$ のスリットから出して計測し,これからせん断変形による梁主筋の移動量 δ 。を差し引いて δ 。とした。ここで, δ ,は①接合部のせん断変形は水平方向に一様に発生し,②せん断変形の中心は柱梁接合部の中心点であるとして算出したものである。

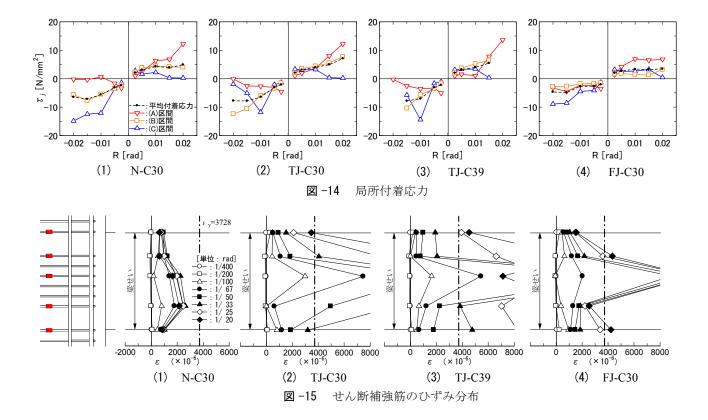


図-13 に梁上端筋のすべり量の推移を示す。図は左方向へのすべり量を正値として示してある。N-C30とFJ-C30を比較すると、R=+1/33 rad 程度までは同様の傾向を示し、加力サイクルが増すごとに引張側鉄筋と圧縮側鉄筋のすべり量が大きくなっている。しかし、さらに大変形になると、引張鉄筋のすべり量はFJ-C30のほうが通し配筋のN-C30より小さくなっている。一方TJ-C30は、N-C30、FJ-C30に比べて、継手部分および圧縮側鉄筋部分のすべり量が小さくなっており、引張側鉄筋部分にひずみが集中する梁主筋のひずみ性状と対応している。

(6) 柱梁接合部内の局所付着応力

柱梁接合部内の梁主筋に貼付したひずみゲージ位置で分割される各区間(図-9のA,B,C区間)での,鉄筋の付着応力に換算した局所付着応力を求めた。ひずみ計測値を,Ramberg-Osgood型の履歴モデル関数を用いて応力に変換し,各区間の応力勾配を鉄筋の周長で除して,局所付着応力とした。図-14にその結果と,柱梁接合部の全せい区間で求めた平均付着応力とを併せて示す。

変形角 R が R=1/400 radのときには、局所付着応力は全試験体とも引張側区間、中央部区間、圧縮側区間の順に大きく、中央部区間の付着応力はおおむね平均付着応力と一致している。 R が大きくなると、 N-C30 では引張側区間の局所付着応力が減少し、いったん中央部区間が大きくなった後、圧縮側区間の局所付着応力が増大している。 TJ-C30、 TJ-C39では、 R が大きくなるとともに継手

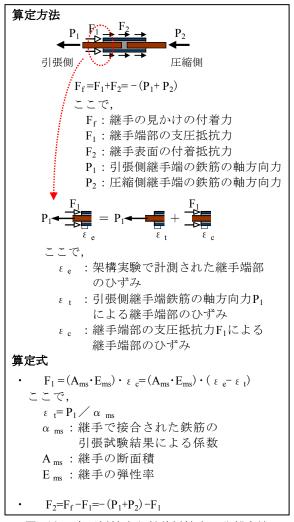
のある中央部区間の局所付着応力が増大している。一 方、FJ-C30ではRが大きくなっても中央部区間の局所付 着応力が小さく、継手部の付着が小さいことを示してい る。

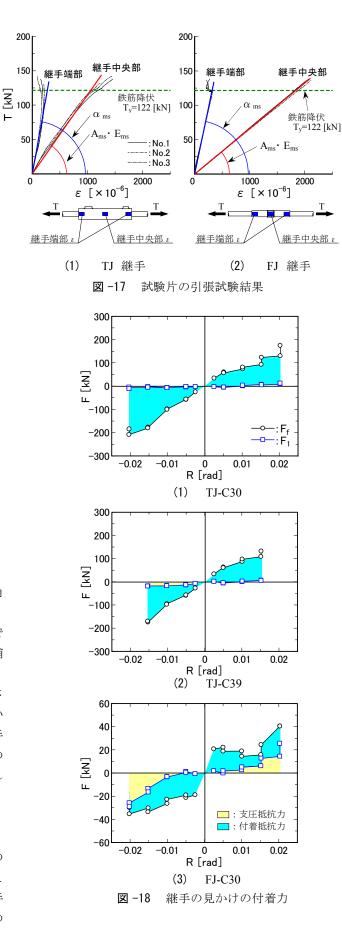
平均付着応力について見ると、N-C30とFJ-C30では梁主筋降伏後のR=1/100 rad以降はあまり増大しないのに対し、TJ-C30、TJ-C39では増大する傾向が見られる。これらの柱梁接合部内での付着劣化の推移は、梁せん断力 $_bQ$ 一変形角 R 関係での逆 S 字状の履歴形状の状況、および等価粘性減衰定数 h_{eq} の推移と対応している。

(7) 柱梁接合部内のせん断補強筋のひずみ性状

図-15 に正加力時の柱梁接合部内のせん断補強筋のひずみ分布を示す。すべての試験体で、変形角 R が大きくなるとともにせん断補強筋のひずみが大きくなっていることがわかる。

通し配筋の N-C30 は、柱梁接合部のせん断ひび割れが顕著となった R=1/67 rad において、せん断補強筋のひずみが進展したが、それ以降の変形では、ひずみの進展は緩やかである。TJ継手を用いたTJ-C30、TJ-C39は、R=1/100 rad以降において、柱梁接合部中央付近のせん断補強筋のひずみが急激に進展し、R=1/67 rad で降伏ひずみに達している。FJ継手を用いたFJ-C30は、R=1/67 rad まではN-C30とほぼ同じ傾向を示したが、それ以降の変形ではせん断補強筋のひずみが急速に進展し、R=1/50 radで降伏ひずみに達している。




図-16 支圧抵抗力と付着抵抗力の分離方法

これらのひずみの推移は、柱梁接合部のせん断変形角 γ₀の推移と、おおむね一致している。

FJ-C30は、図 -14 の R=1/50 rad までの平均付着応力では、N-C30 より少し小さい値を示しているが、せん断補強筋のひずみは1/50 rad以降で大きく進展し、図-9の γ pは1/25 rad以降も大きくなっており、柱梁接合部に入力されるせん断力は変形角 R の増加とともに大きくなっていると考えられる。よって、梁主筋の付着劣化後は、継手端部の支圧抵抗機構も存在し、柱梁接合部のせん断力の抵抗機構(ストラット作用、トラス作用)の状態が通し配筋の場合と異なることが推察される。

(8)機械式継手の見かけの付着抵抗

(6)項で述べたTJ-C30, TJ-C39, FJ-C30のB区間の付着力は,機械式継手の見かけの付着力 F_f である。そこで,見かけの付着力 F_f を継手端部の支圧抵抗力 F_1 と継手表面の付着抵抗力 F_2 によるものと考え^{例えば5)},両者の分離を試みた。算定上の仮定および方法は前報告¹⁾と同じであり,別途行った鉄筋を継手で接合した試験片の引

張試験結果をもとに支圧抵抗力 F_1 を求め、見かけの付着力 F_1 と支圧抵抗力 F_1 の差分から付着抵抗力 F_2 を求めた。

図 -16 に分離方法の概要を、図 -17 に試験片の引張試験結果を、図 -18 に支圧抵抗力 F_1 と付着抵抗力 F_2 の算定結果を示す。

外径の大きいTJ継手を用いたTJ-C30、TJ-C39は、見かけの付着力 F_f の大半は付着抵抗力 F_2 であることがわかる。TJ-C30の $R=\pm 1/50$ rad (1回目)加力時の付着抵抗力 F_2 の平均値を継手表面積で除した付着応力 τ_{TJ} は τ_{TJ} =4.3 N/mm^2 であった。これは、N-C30のB区間の最大局所付着応力(R=-1/67 rad 時)の 0.56 倍である。

外径の小さいFJ継手を用いたFJ-C30は,R=1/400 radまでは見かけの付着力 F_f の大半は付着抵抗力 F_2 であるが,R=1/200 rad以降でRの増加とともに付着抵抗力 F_2 が減少し,支圧抵抗力 F_1 が増加する傾向が見られる。FJ-C30の $R=\pm 1/50 \text{ rad}$ (1回目)加力時の見かけの付着力 F_f の平均値に対する支圧抵抗力 F_1 の比率 $AvgF_1/AvgF_f$ は53%(=20kN/38kN)であった。これは,前報告 11 の結果($F_1/F_f=48\%$)とほぼ同程度の比率となった。

4. まとめ

柱梁接合部内に機械式継手を用いた工法の構造性能を 確認することを目的として実施した、十字形架構の構造 実験の結果を報告した。結果をまとめると、以下のとお りである。

- ①柱梁接合部に機械式継手を用いた架構の構造性能 は、機械式継手の形状によって異なる。
- ②機械式継手を用いた試験体では,通し配筋の試験体 に比べて最大荷重以降の荷重低下が小さく,大変形 に至るまで荷重を保持した。
- ③履歴吸収エネルギーは、外径の大きいTJ継手の試験 体は通し配筋の場合と同等以上であったが、外径の 小さいFJ継手の試験体はやや小さかった。
- ④TJ継手を用いた架構においてコンクリート強度を高くした場合、履歴性状の向上が見られた。
- ⑤機械式継手の見かけの付着力を支圧抵抗力と付着抵抗力とに分離した結果, TJ継手の場合は大半が付着抵抗力であり, FJ継手の場合は R=1/50 rad 時で支圧抵抗力と付着抵抗力がほぼ同程度であった。

参考文献

- 1) 新上 浩, 小坂英之, 山中久幸, 平野秀和, 貫洞 覚:柱梁接合部内に機械式継手を用いた RC 造架構 の加力実験, 三井住友建設技術研究所報告, No.3, pp.105-112, 2005
- 2) 日本建築学会:鉄筋コンクリート構造計算規準・同解説 -許容応力度設計法- 1999, 1999
- 3) 日本建築学会:鉄筋コンクリート造建物の靭性保証 型耐震設計指針・同解説,1999
- 4) American Concrete Institute: Building Code and Commentary ACI318-95/318/R-95, 1998
- 5) 杉崎一哉,山元雄亮,阿瀬正明,杉山智昭,中野克彦,松崎育弘:鉄筋コンクリート部材に定着されたモルタル充填式機械式金物の定着性能に関する実験的研究(その2),日本建築学会大会学術講演梗概集(北海道),pp.37-38,2004